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Abstract. The classical continuousY model—defined as the two-component normalized spin—
field—within a time-dependent magnetic field is investigated. It is shown that the dynamics of the
spin—field is governed by the elliptic sine—~Gordon equation in which the time dependence is built
into the time-dependent external magnetic field. This equation is solved by using the covariant
Hamilton—Jacobi equation technique and trécBund transformation method. The reasons for
the poor dynamics of the model are discussed.

1. Introduction

The classicak Y model—as considered in the literature—is usually understood as the model
defined on the basis of the classical three-dimensional spin véci:or(S", S7, §%) of unit
length. Itis assumed that the Hamiltonian contains only two compo&hts”) [1, 2]. Such
a model describes quasi-one-dimensional magnets (for example, £ $BHB].

In this paper we present a consistent theory of X#¢ model defined as the classical
two-component spin vectdt = (5%, §%) subjected to the normalization condition [6, 7]:

()2 +($")? =1 (1.1)

Interactions in this model are described by the same Hamiltonian as in the previous formulation,
ie.

H=—J) (555 +S'S) (1.2)
G.))
whereS; is the spin vector located in thigh point of the one-dimensional lattice arids the
exchange integral. (The sum runs over the nearest neighbours.)

One should stress that such differences in definitions are not relevant for the equilibrium
statistical mechanics description point of view, but they become important in considering
topological and dynamical properties of the model. This follows from the fact that topological
properties depend on the structure of the field and the dynamics requires definition of an
additional mathematical structure. If one considers dynamics on the basis of Hamiltonian
formalism one should know the structure of fundamental Poisson brackets [8].

In our approach we define the dynamics of i model by the fundamental Poisson
brackets in the form:

{S', 87} = B3 {S, 87y =0=1{s;, 57} (1.3)
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whereB = const and;; is the Kronecker symbol.
In order to show important differences in the dynamical behaviour of both approaches we
consider the equations of motion. They are the following:

o for the classical three-component spin [9]:

afy B_H
NG
wherew, 8, y = 1, 2, 3 and the repeated indices imply the summation;

o for the classical two-component spin:

=g N4 (1.4)

. OH
st=B— 1.5
552 (1.59)

: OH
§2 = _—_B— 1.50
5 (1.%0)

whereS! = $* ands? = §”.
After differentiating with respect to time the spin-normalization conditions and using
(1.4), (1.5) we obtain:

o for the three-component model, 8, y = 1, 2, 3):

. oH
5 8% = g¥Pr g* —__ g7 1.6
& Y (1.6)
o for the two-component modeéd = 1, 2):
. oH oH
§e8* =B |St— —§2—|. 1.7
[ 952 asl} &1

The right-hand side of (1.6) is identically zero whereas the right-hand side of (1.7) is,
in general, not zero. This means that equations of motion (1.5) are not consistent with
spin-normalization condition (1.1). To avoid such inconsistency one should use Dirac’s
method in order to obtain correct equations of motion [10]. This method provides one with
the generalization of the Hamilton dynamics for the case where constraints inconsistent
with the equations of motion exist.

The Dirac method will be described in section 2 for the case of the classical contikitious
model interacting with an external time-dependent magnetic field. In section 3 we will solve
the equation obtained in section 2 using the covariant Hamilton—Jacobi equation technique and
in section 4 we will compare the results obtained in section 3 with those obtained by using the
Backlund transformation method.

2. The classical continuousXY model in an external time-dependent magnetic field

The classical continuousY model—considered in this paper—is defined as a two-component
field:

S(x) = [u(x), v(x)] (2.1)

wherex = (r, x¥) € R andu = S, v = §2.
It is assumed that the field is subjected to the normalization condition (1.1) which in this
case has the form:

Vx € R u(x)]2+ [v(x)])? = 1. (2.2)
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For the model in an external time-dependent magnetic field the Hamiltonian consists of two
parts: the term describing the exchange interaction:

Ho = g/ dx [(Vu)2 + (Vv)] (2.39)
Rd

whereK is the exchange integral, and the term describing interaction of the spin—field with
the external time-dependent magnetic fie(d) in the direction of thes*-axis:

Hy = —h() dx u(x). (2.30)
R4

The fundamental Poisson brackets (1.3) have the form:

{u@), vy} = BS(x - y) {u@), u(y)} = 0= {v), v} (2.4)
If F andG are arbitrary functionals af andv, then the Poisson bracket is defined as

SF 46G §F 8G
{F, G} :/ dx B = — — —— = (2.5)
Rd Su(x) dv(x)  Sv(x) du(x)

where 2L aum sm , aum SU(A are variational derivatives df andG [8].

Since condition (2.2) |s not consistent with Hamilton’s equations of motion, obtained in
a ‘standard’ way we have to use Dirac’s method [10]. In this method the Hamiltonian of the
constrained system is taken in the form:

H* = H +/ di A(x)¢ (x) 2.6)
R¢

whereH is the Hamiltonian of the unconstrained system aiid) is the constraint given in
the form:

$(x) ~ 0 2.7)

with & indicating the so-called Dirac’s weak equality. The meaning of this equality is the
following: if we are to compute the Poisson brackets of expressions containing the constraint
function¢ (x), we cannot set this function to zero as long as we do not evaluate these brackets.

The functioni(x) is the Lagrange multiplier determined by Dirac’s procedure, which for
the considered case will be given below.

Let:

H = Hy+ H, (2.8)
whereHp and H; are given by formulae (2.3) and constraint (2.2) is given as

¢(0) = 3{[u@)]* + )]~ 1} ~ 0. (2.9)
Equations of motion are obtained on the basis of general formulae:

S = {S%, H*} (2.10)
(wherea = 1, 2 andS* = u, §? = v) and they take the form:

u(x) = B[—KAv(x) + L(x)v(x)] (2.11a)

v(x) = B[KAu(x) + h(t) — A(x)u(x)] (2.11b)

whereA is thed-dimensional Laplacian (over space coordinates).

In the first step of Dirac’s procedure we examine the compatibility of equations (2.11)
with primary constraint (2.9). In order to do that let us differentiate (2.9) with respect to time
and substitute instead #fandv the right-hand sides of (2.11). We obtain the following result:

—B[K(uAv —vAu) — h(t)v] = 0. (2.12)
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Because the left-hand side of (2.12) does not depend on Lagrange multidliés equation
represents the so-called secondary constraint:

¥ = KuAv —vAu) — h(t)v ~ 0. (2.12)

Constraint (2.1 ought to be consistent with equations of motion (2.11), therefore we examine
the consistency condition again. Repeating the above-described procedure we obtain

BK AL — Bhu) — BK{K[uA(Au) + vA(Av) — (Au)? — (Av)?] — 2hAu)
+Bh% + ‘;—i‘v ~ 0 (2.13)

which is the equation fax.

Altogether the system of equations describing the dynamics of the classical contifivious
model in an external magnetic field consists of equations of motion (2.11), primary constraint
(2.9), secondary constraint (2/12nd equation for the Lagrange multiplier (2.13).

In order to simplify that system it is convenient to introduce a new variaptg such that:
= COS
u(x) _ ¢ (x) (2.14)
v(x) = Sing(x).

This function represents the angle between Shexis and the spin orientation at point
Therefore it should be real.
The simplified system of equations is now:

e equation of motion:
¢ = B[-K(Vg)?+hcosp — A] (2.15)
e secondary constraint:
KAg = h(t)sing (2.1%)
and the equation to fix(x):

- dh
B(K A — hcosp)[r — hcosp + K (Ve)?] + m sing = 0. (2.1%)

(Primary constraint (2.9) is satisfied automatically.)

The solution of our problem consists in finding such functigris) and A(x) so that
equations (2.15) are satisfied simultaneously.

Instead of solving equation (2.@pwith respect tor and inserting the obtained solution
into (2.1%) in order to get the equation fgr, we eliminatex from those equations. In order
to do that let us define the operator:

D= KA — hcosg. (2.16)
Operating on both sides of (2.4pwith (2.16) and using (2.1 we obtain:

%[KA(;J — hsing] = 0. (2.17)

Thus equations (2.5 and (2.18) reduce to (2.17) which states that the expression in the
square bracket is the first integral of them. This requirement establishes a restriction for
admissible initial conditions. The set of these conditions forms a submanifold of the starting
phase space of the model. Furthermore, the consistency with equatioh)(&d6ires that

this expression is to be equal to zero. Therefore, we are to choose those initial conditions so
that such a consistency occurs.
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The above analysis has shown that the only equation describing the dynamics of the
classical continuouX¥ Y model in an external time-dependent magnetic field is the elliptic sine—
Gordon equation (2.19. This equation corresponds formally to that obtained by Mikeska
[1], however, there is an important difference between them: our equation does not contain
the time derivative explicitly and the time dependence &f governed by the time-dependent
external magnetic field. This is the only way to start the dynamics of the model. One can say
that the dynamics of this model is ‘exotic’ because it depends on time through the ‘external’
functionh(z).

3. The covariant Hamilton—Jacobi equation technique for the elliptic sine—Gordon
equation

It was shown in section 2 that the only equation describing the dynamics of the classical
continuousX Y model in a time-dependent magnetic field is the elliptic sine—Gordon equation
(2.1%0). This equation did not contain the time derivative, but the time dependence was built
into the magnetic field. This is the characteristic feature of the model defined as a two-
component spin—field with constraint (2.2).

In this section we solve this equation by using the covariant Hamilton—Jacobi equation
technique. This technique reduces the problem of solving the differential equation of the
second order to solving the differential equation of the first order [11, 12].

We rewrite equation (2.1§ in the form:

Ap = q(t)sing (3.1)

whereg (1) = 2.
This equation can be expressed in the form of the covariant Euler—-Lagrange equation:

oL oL
A [ } ——=0 3.2
0(0up) ] ¢
where/ is the Lagrangian density given by
L= 3(3,0)(@"p) — 2q(t) cos &. (3.3)
Defining the generalized impulse:
aL
W= (3.4)
9(0u9)
and the Hamiltonian density:
H = P"(0up) — L (3.5)
the equations of motion are the following:
oH
0,0 = —— 3.6a
ma 5 pr ( )
oM
d, P¥ = —— 3.60
! 5 (3.60)
The corresponding covariant Hamilton—Jacobi equation is [11, 12]:
asH
Hle, —.,x)+9,8=0 3.7)
dg
whereS* is defined as
aSH
= P*, (3.8)

¢
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In the present case:

H=1P"P, +2qcos % (3.9)
and so the covariant Hamilton—Jacobi equation takes the explicit form:
108" 9S8,
+ cosz +9,8" =0. 3.10
29y 00 T ’ (3.10)

Because the Hamiltonian density does not dependexplicitly, equation (3.10) can therefore
be separated into the form of two independent equations:

195" 38, )

s2 =E 3.11a
2799 0 +2g co ( )
9,S"+E=0 (3.1Db)

whereE is the separation constant.
Insertlng““ = P = "¢ into (3.11a) one obtains:

2(0"9)(3.p) +2gcOS 4 = E. (3.12)
Let us consider the meaning of the separation consfanfAs ¢(x) is a real function
(3,9)(3"¢) > 0. Therefore, following (3.12) we have:

E—2gcos% >0 Yo € [0, 21]. (3.13)
In particular, equation (3.13) should be satisfied for the maximal value 6fiz’cahus:
E—2¢>0. (3.14)

The exact value of can be obtained from (3.12) by taking an appropriate boundary condition
for ¢ and its gradiend, . Moreover, it results from (3.12) that this value dependg @i
With the aid of the new variable chosen in the form [13]:

_ 3
_—/q’o V2E —4q cog §

wheregy = const, equation (3.12) can be rewritten as
@ V)*v)=1 (3.16)
which is the eikonal equation. (Following (3.1B)is a real function.)
The procedure of obtaining solutions of the Hamilton—Jacobi equation (3.12) consists in
computing integral (3.15) and solving the obtained equation with respect to
Exact solutions of (3.16) obtained in the way of group-theoretic analysis are given in [14].
In a further analysis we take the simplest solution in the form:

1 &
Vv N ! 3.17
(x) 77 ;x (3.17)

whered is the dimension.
The quantityy in (3.15) is a function of time which, in general, may be positive, negative
or equal to zero. Therefore, equation (3.15) can be written as

(3.15)

= / (3.18)
w J2E £ 4|q|cog §
where the sign ‘+'is foy < 0and ~’is for ¢ > 0 and
y=¥"% (3.18)

V2E
forg = 0.
Integrals (3.18) can be transformed into Legendre’s form of the elliptic integral of the
first kind [15]. They are the following (for simplicity we assume thgt= 0):
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(1) Forg < O:
k @
Ve~ F(%k (3.19)
Vg (2 )
whereF is the Legendre elliptic integral of the first kind ahd= |/ Z24L is the modulus.
(2) Forg > 0O:
k T—¢
Ve —_|K(k)—F <— k>] (3.20)
wm[ 2

wherek = \/@ andK (k) = F (%, k) is the complete elliptic integral.
Inverting (3.19) and (3.20) with respectgowne obtain solutions given by formulae:
)
@ =2am (@ v, k) (3.21)

wheream (u, k) is the Jacobian elliptic function called the amplitude:pf
@)

Sy 1),

@ =7 +2am <—k V—K.,k (3.22)

Following the properties of the functiann (u, k) equation (3.22 takes the form:
0= 2arctar{k/tn (—]Lq' Vv, k)] (3.22)

wherek’ = +/1 — k? andtn(u, k) = tan(am (u, k)) [15].

Solutions (3.21) and (3.22) have such a property that in the |ghit> O they tend to
(3.18) with g = 0.

Figures 14) and 1p) present two-dimensional plots of solutions (3.21) and (3.22) in the
planey = 0, respectively. The values of the magnetic field are representedh§.999 999
in both cases.

In the first case; < O (figure 1@)). For simplicity we assume that = 2k?. Therefore
the separation constant&s= 4(1 — k?).

The spin phase exhibits a rapid change of values in the centre of the domain and near their
boundaries. Behaviour in the centre has a soliton-like character. In this region the competition
appears between the exchange effect (important in short distances) and interaction with an
external magnetic field. For large distances the influence of the magnetic field has predominant
significance.

The solution foy > 0 (figure 1p)) in which E = 4 (forq = 2k?) is a simple modification
of the previous case (which is seenin (3)22t exhibits the ‘boundary effect’, butin the centre
of the domain the spins are parallel.

4. The Backlund transformation method for the elliptic sine—Gordon equation

The main qualitative result of section 3 is the following: the solutions of the problem depend
on time through the time-dependent external magnetic field (appearing as a coefficient in the
elliptic sine—Gordon equation). It turned out that the sign of the funétionhad an important
significance. Dependent on that sign we had three branches of solutions given by (3.2t), (3.18
and (3.22). Butin the limitg| — 0 remained the only solution given by (3148
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(a) 8 T T T T T T T

6 ]

phi
o

b) 4 ‘ x T

phi
o

-4 L I L
-10 -5 0 5 10
X

Figure 1. (a) The phase(x, y) of the XY spin—field configuration in the time-dependent magnetic
field » < 0 given by formula (3.21) in the plang = 0 for k = 0.999999,4 = 2k2 and

E = 4(1 — k?). (b) The phase(x, y) of the XY spin—field configuration in the time-dependent
magnetic field: > 0 given by formula (3.22) in the plane= 0 for k = 0.999 9994 = 2k and

E =4

In this section we verify the above results on the basis of thekRind transformation
method for the equation in two spatial dimensions.

The main idea of this method is to find such relations between two solutions of the
considered equation given in the form of differential equations so that it is possible to integrate
theminasimplerway. (A precise definition of thé&klund transformationis givenin[16, 17].)
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In the considered case equation (3.1) has the form:

92 92
—_—+ — =g () sin 4.1
<8x2 3y2>¢ q(t)sing (4.1)
which can be written as:
d,0:¢ = g(t) sing (4.2)
whereg is a real functionz = x +iy, z = x —iy, 9; = 3(& —i%), 9: = 3(& +id),

g() = 3q(1).
The Backlund transformation for equation (4.2) is the following:

9, ¥ = &1(0) sinW, (4.39)

0; Wy = &2(0) sinWq (4.30)
where

W1 = Z(¢1+ By2) (4.49)

W, = Z(p1 — By2) (4.40)

andg is called the spectral or&klund transformation parameter.
The functionsp; andB¢, are two solutions of equation (4.2,is constant and

6162 = g. (4.5)
Before obtaining solutions of (4.2) let us consider the complex conjugation of fundtions

andW,. Itis easy to see that the following symmetry relations hold (bars denote the complex
conjugation):

Uy =y U, = W, (4.6)
wheng is a real number;
U, =W, Uy = Uy 4.7

wheng is a pure imaginary number.
Atfirstlet us consider the second case given by (4.7) [18]. Taking the complex conjugation
of both sides of (4.8) and comparing with (413 we obtain that

£ =& (4.8)
Substituting (4.8) into (4.5) we have
&% = g. (4.9)

Thusé; = ,/g€?, whered is the spectral parameter.
It results from (4.9) that in this case th@&lund transformation exists whens positive.
In the first case (equation (4.6)) let us assume for simplicity ghat1.
One can rewrite equations (4.3) in the form:

az(m;gaz) :glsin<‘p1;¢2> (4.108)
Y1 — @2 . (P11t @2
85( > ) =§zsm< > ) (4.1)

Becausep, = 0 is a solution of (4.2) one can thus substitute it into (4.10).
We obtain the following equations fg:

, (%) — & sin (%) (4.118)

5 (%) — & sin (%) . (4.11b)
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Taking complex conjugation of (4.b)l and comparing the obtained equation with (&)1
we obtain formula (4.8) again. This means that equation (4.2) has real solutions when the
parameteg is positive.

The solution of equations (4.11) has he form:

@1 = 4arctaric exp1(0)z + £1(0)z]} (4.12)
or
@1 = 4 arctarjc exp[2,/g(x cosd — y sing)]} (4.12)

wherec is a real constant, which is the one-soliton-like solution for great valugs ¢The
method of obtaining multiple-soliton-like solutions is described in [18].)

The above considerations concerned the situation when the sign of the fug@tian
equation (4.2) was positive. Moreover, it can be equal to zero or negative.

In the case wherg = 0, equation (4.2) takes the form:

9.0:¢ = 0. (4.13)
The general solution of (4.13) in the form of a real function is
p=f@+ [ (4.14)

where f is an arbitrary function of the argumentand f is its complex conjugation. In the
case wherg < 0, equation (4.2) can be written as

3,0:0 = —|g| sing. (4.15)

Using the BEacklund transformation method one can obtain solutions of (4.15) in the form of
complex functions, which here have no physical interpretation. However, the real solution of
equation (4.15) obtained using the property of the trigonometric function sine can be written
in the form

p=7+qp (4.16)

wherey; is the solution of equation (4.2) with > O.

Solution (4.16) can be interpreted in this way so that the change of direction of the magnetic
field gives the spin—field configuration turned iy

Let us consider the properties of solutions (4.12) and (4.16) in the case {ghere 0.
Following (4.9) and (4.8§;, — 0,i = 1, 2, in that limit. Thus solution (4.12) takes the form:

¢1 = 4arctare (4.17)
whereas
¢ = +4arctany. (4.18)

In order to obtain consistency of the above solutions we compare (4.18) with (4.17). The
consistency condition is
c—1

— (4.19)

co =

wherec # —1.

Solution (4.14), fog = 0, ought to be consistent with (4.17) and (4.18). This consistency
condition reads = 4 arctarr.

Thus the solutions obtained using&klund transformation have similar properties as
those obtained on the basis of the Hamilton—Jacobi equation, but they differ in their functional
forms.

However, it is possible to compare these solutions. In order to do this let us assume that
k = 1in equation (3.19).
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(O

=
o

-10 -5 0 5 10
X

Figure 2. (a) The phase(x, y) of the XY spin—field configuration in the time-dependent magnetic

field » > 0 given by formula (4.13 for c = 0.5,6 = %, g = 10. (b) Sections of configuration
given in @) by the planey = 0 forg = 10 (——),g =0.01 (---),g =0.001 (- --- ).

Following the formula [15]:
¢ .\ T+e
F (E’ 1) - Intan( " ) (4.20)

we have

p=4 arctan{ exp [2\/|?| (szy) ]} - (4.21)

which corresponds to (4.16).

Figure 2@) presents a three-dimensional plot of the solution (3.12he values of the
parameters are the followingz = 0.5, 6 = % andg = 10. It exhibits a localization
characteristic of a one-soliton-like solution. The behaviour of this solution in a decreasing
magnetic field is shown in figure B}, The plots were made in the plape= 0. The solutions
become increasingly flat when the field decreases and tend to a constant valdiarctarc
when the field disappears. Thus, the soliton decays in the decreasing field. Applying the
increasing magnetic field of opposite direction we can create the soliton (with the phase turned
by ) again. The results for this case are presented in figusgsaB@ 3b). The functional
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(b) 4

< 0

-10 -5 0 5 10
X

Figure 3. (a) The phase(x, y) of the XY spin—field configuration in the time-dependent magnetic
field h < 0 given by formula (4.16) forg = —%, 0= %, g = 10. () Sections of configurations
given in @) by the planey = 0 forg = 10 (——),g =0.01 (---),g =0.001 (----- ).

form of the solution is given by formula (4.16). The constant coefficigiig given by (4.19)
and is equal to:—%. The paramete® andg have the same values as in figureag)2(nd 2).

5. Conclusions

In this paper we have analysed the properties of the classical contidibusodel in a
time-dependent external magnetic field.

The model was defined as a two-component fiel@®émvith the normalization condition
given by equation (2.2). It appeared that the dynamics of such a defined model had to be
described on the basis of Dirac’s method for constrained systems.

The analyses showed that the only equation describing the evolution of the model was
the elliptic sine—Gordon equation with the time-dependent coefficient (equation (3.1)). This
equation was simultaneously the first integral of equations of motion g dfd (2.18),
as well as an additional constraint imposed on the starting space defined by normalization
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condition (2.2). This starting space has the structure of the fibre bundle with the total space:
M = UxeRd(Sl)x, where(S?), is a circle at point € R and the base spa#¢, whereas the
resulting space is given by solutions of equation (B)13 he specific feature of this equation
is the lack of time derivative in it. Thus, the dynamics of the spin—field is governed by the time
dependence of the external magnetic field.

Such a ‘strange’ behaviour of the model results from the fact that normalization condition
(2.2) is not invariant of the Lie algebra defined by (2.4).

Equation (3.1) was solved in two ways:

(i) using the covariant Hamilton—Jacobi equation;
(i) on the basis of the Bcklund transformation method.

In the first case we considered the problem in the sfksoef arbitrary dimensiom, whereas
in the second case we considered the problem in the $pface

The results are qualitatively similar: dependent on the sign of the funktiorwe have
obtained three branches of solutions: A¢r) < 0,4 (r) = 0 andh(¢) > 0. When|k| — 0the
solutions obtained on the basis of both methods transform continuously to a ‘static’ solution
(i.e. forh = 0).

The solutions obtained on the basis of the Hamilton—Jacobi technique have the form of
Jacobian elliptic functions and exhibit a domain structure, whereas the solutions obtained on
the basis of the Bcklund transformation method have the form of one-soliton-like solutions for
great values ofi(¢) and they decay when the field disappears. Moreover, they are the special
case of those obtained on the basis of the Hamilton—Jacobi method. Howeveactiaril
transformation method provides the possibility of generating multisoliton solutions.

One can show that our approach to the classtdaimodel leads to the same structure of
equations of motion as the approaches considered in [2] for the cla¥sicalodel and in [9]
for the classical Heisenberg model with the constraffit— B ~ 0, whereB is the constant
defined in equation (1.3).

The elliptic sine—Gordon equation has been obtained in this paper as the equation of
motion of the classical continuoudsY model in an external magnetic field. The important
feature of this equation is the fact that the coefficient appearing by the sine function on the
right-hand side of it is a function of time and may change the sign, dependent on the direction
of the magnetic field.

The equation withy = const > 0 was investigated by many authors. Generally, this
equation describes static (i.e. time-independent) nonlinear phenomena in two-dimensional
systems of condensed matter physics and field theory [19]. In particular, the elliptic sine—
Gordon equation can be used to describe topological defects in magnetic structures [20—24]
and its solutions may be used in describing the propagation of magnetic flux through a large two-
dimensional Josephson tunnelling junction[18]. The authors useditidihd transformation
method [18, 20], the direct Hirota method [22, 23], the inverse scattering method [24-28] and
the ansatzp = 4 arctankK (x)Y (y)] [21].

The results obtained in this paper on the basis of thekRind transformation method (for
g = 1) are analogical to those obtained in [18], however the results presented in [20] (obtained
by the same method) are more general and describe topological defects in incommensurate
magnetic and crystal structures. Similarly, the results obtained by the inverse scattering method
are more general and provide the possibility to describe vortices and vortex dipoles [27, 28].

All these methods were used only in the case where 0, whereas the Hamilton—
Jacobi technique also provides the possibility of solutiong;fer 0. Thus the elliptic sine—
Gordon equation with the negative right-hand side needs more detailed investigation using
other methods.
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