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Abstract. The classical continuousXY model—defined as the two-component normalized spin–
field—within a time-dependent magnetic field is investigated. It is shown that the dynamics of the
spin–field is governed by the elliptic sine–Gordon equation in which the time dependence is built
into the time-dependent external magnetic field. This equation is solved by using the covariant
Hamilton–Jacobi equation technique and the Bäcklund transformation method. The reasons for
the poor dynamics of the model are discussed.

1. Introduction

The classicalXY model—as considered in the literature—is usually understood as the model
defined on the basis of the classical three-dimensional spin vectorES = (Sx, Sy, Sz) of unit
length. It is assumed that the Hamiltonian contains only two components(Sx, Sy) [1, 2]. Such
a model describes quasi-one-dimensional magnets (for example, CsNiF3) [3–5].

In this paper we present a consistent theory of theXY model defined as the classical
two-component spin vectorES = (Sx, Sy) subjected to the normalization condition [6, 7]:

(Sx)2 + (Sy)2 = 1. (1.1)

Interactions in this model are described by the same Hamiltonian as in the previous formulation,
i.e.

H = −J
∑
(i,j)

(Sxi S
x
j + Syi S

y

j ) (1.2)

whereESi is the spin vector located in theith point of the one-dimensional lattice andJ is the
exchange integral. (The sum runs over the nearest neighbours.)

One should stress that such differences in definitions are not relevant for the equilibrium
statistical mechanics description point of view, but they become important in considering
topological and dynamical properties of the model. This follows from the fact that topological
properties depend on the structure of the field and the dynamics requires definition of an
additional mathematical structure. If one considers dynamics on the basis of Hamiltonian
formalism one should know the structure of fundamental Poisson brackets [8].

In our approach we define the dynamics of theXY model by the fundamental Poisson
brackets in the form:

{Sxi , Syj } = Bδij {Sxi , Sxj } = 0= {Syi , Syj } (1.3)

0305-4470/99/325907+14$30.00 © 1999 IOP Publishing Ltd 5907



5908 Z Lisowski and K Sokalski

whereB = const andδij is the Kronecker symbol.
In order to show important differences in the dynamical behaviour of both approaches we

consider the equations of motion. They are the following:

• for the classical three-component spin [9]:

Ṡα = εαβγ ∂H
∂Sβ

Sγ (1.4)

whereα, β, γ = 1, 2, 3 and the repeated indices imply the summation;
• for the classical two-component spin:

Ṡ1 = B ∂H
∂S2

(1.5a)

Ṡ2 = −B ∂H
∂S1

(1.5b)

whereS1 = Sx andS2 = Sy .
After differentiating with respect to time the spin-normalization conditions and using
(1.4), (1.5) we obtain:
• for the three-component model(α, β, γ = 1, 2, 3):

SαṠα = εαβγ Sα ∂H
∂Sβ

Sγ (1.6)

• for the two-component model(α = 1, 2):

SαṠα = B
[
S1 ∂H

∂S2
− S2 ∂H

∂S1

]
. (1.7)

The right-hand side of (1.6) is identically zero whereas the right-hand side of (1.7) is,
in general, not zero. This means that equations of motion (1.5) are not consistent with
spin-normalization condition (1.1). To avoid such inconsistency one should use Dirac’s
method in order to obtain correct equations of motion [10]. This method provides one with
the generalization of the Hamilton dynamics for the case where constraints inconsistent
with the equations of motion exist.

The Dirac method will be described in section 2 for the case of the classical continuousXY

model interacting with an external time-dependent magnetic field. In section 3 we will solve
the equation obtained in section 2 using the covariant Hamilton–Jacobi equation technique and
in section 4 we will compare the results obtained in section 3 with those obtained by using the
Bäcklund transformation method.

2. The classical continuousXY model in an external time-dependent magnetic field

The classical continuousXY model—considered in this paper—is defined as a two-component
field:

ES(x) = [u(x), v(x)] (2.1)

wherex = (t, Ex) ∈ Rd+1 andu = S1, v = S2.
It is assumed that the field is subjected to the normalization condition (1.1) which in this

case has the form:

∀x ∈ Rd+1[u(x)]2 + [v(x)]2 = 1. (2.2)
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For the model in an external time-dependent magnetic field the Hamiltonian consists of two
parts: the term describing the exchange interaction:

H0 = K

2

∫
Rd

dEx [( E∇u)2 + ( E∇v)2] (2.3a)

whereK is the exchange integral, and the term describing interaction of the spin–field with
the external time-dependent magnetic fieldh(t) in the direction of theS1-axis:

H1 = −h(t)
∫
Rd

dEx u(x). (2.3b)

The fundamental Poisson brackets (1.3) have the form:

{u(Ex), v(Ey)} = Bδ(Ex − Ey) {u(Ex), u(Ey)} = 0= {v(Ex), v(Ey)}. (2.4)

If F andG are arbitrary functionals ofu andv, then the Poisson bracket is defined as

{F,G} =
∫
Rd

dEx B
[
δF

δu(Ex)
δG

δv(Ex) −
δF

δv(Ex)
δG

δu(Ex)
]

(2.5)

where δF
δu(Ex) ,

δF
δv(Ex) ,

δG
δu(Ex) ,

δG
δv(Ex) are variational derivatives ofF andG [8].

Since condition (2.2) is not consistent with Hamilton’s equations of motion, obtained in
a ‘standard’ way we have to use Dirac’s method [10]. In this method the Hamiltonian of the
constrained system is taken in the form:

H ∗ = H +
∫
Rd

dEx λ(x)φ(x) (2.6)

whereH is the Hamiltonian of the unconstrained system andφ(x) is the constraint given in
the form:

φ(x) ≈ 0 (2.7)

with ≈ indicating the so-called Dirac’s weak equality. The meaning of this equality is the
following: if we are to compute the Poisson brackets of expressions containing the constraint
functionφ(x), we cannot set this function to zero as long as we do not evaluate these brackets.

The functionλ(x) is the Lagrange multiplier determined by Dirac’s procedure, which for
the considered case will be given below.

Let:

H = H0 +H1 (2.8)

whereH0 andH1 are given by formulae (2.3) and constraint (2.2) is given as

φ(x) = 1
2{[u(x)]2 + [v(x)]2 − 1} ≈ 0. (2.9)

Equations of motion are obtained on the basis of general formulae:

Ṡα = {Sα,H ∗} (2.10)

(whereα = 1, 2 andS1 = u, S2 = v) and they take the form:

u̇(x) = B[−K1v(x) + λ(x)v(x)] (2.11a)

v̇(x) = B[K1u(x) + h(t)− λ(x)u(x)] (2.11b)

where1 is thed-dimensional Laplacian (over space coordinates).
In the first step of Dirac’s procedure we examine the compatibility of equations (2.11)

with primary constraint (2.9). In order to do that let us differentiate (2.9) with respect to time
and substitute instead ofu̇ andv̇ the right-hand sides of (2.11). We obtain the following result:

−B[K(u1v − v1u)− h(t)v] ≈ 0. (2.12)
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Because the left-hand side of (2.12) does not depend on Lagrange multiplierλ, this equation
represents the so-called secondary constraint:

9 = K(u1v − v1u)− h(t)v ≈ 0. (2.12′)

Constraint (2.12′) ought to be consistent with equations of motion (2.11), therefore we examine
the consistency condition again. Repeating the above-described procedure we obtain

BK1λ− Bhuλ− BK{K[u1(1u) + v1(1v)− (1u)2 − (1v)2] − 2h1u}
+Bh2 +

dh

dt
v ≈ 0 (2.13)

which is the equation forλ.
Altogether the system of equations describing the dynamics of the classical continuousXY

model in an external magnetic field consists of equations of motion (2.11), primary constraint
(2.9), secondary constraint (2.12′) and equation for the Lagrange multiplier (2.13).

In order to simplify that system it is convenient to introduce a new variableϕ(x) such that:

u(x) = cosϕ(x)

v(x) = sinϕ(x).
(2.14)

This function represents the angle between theS1-axis and the spin orientation at pointEx.
Therefore it should be real.

The simplified system of equations is now:

• equation of motion:

ϕ̇ = B[−K( E∇ϕ)2 + h cosϕ − λ] (2.15a)

• secondary constraint:

K1ϕ = h(t) sinϕ (2.15b)

and the equation to fixλ(x):

B(K1− h cosϕ)[λ− h cosϕ +K( E∇ϕ)2] +
dh

dt
sinϕ = 0. (2.15c)

(Primary constraint (2.9) is satisfied automatically.)

The solution of our problem consists in finding such functionsϕ(x) andλ(x) so that
equations (2.15) are satisfied simultaneously.

Instead of solving equation (2.15c) with respect toλ and inserting the obtained solution
into (2.15a) in order to get the equation forϕ, we eliminateλ from those equations. In order
to do that let us define the operator:

D̂ = K1− h cosϕ. (2.16)

Operating on both sides of (2.15a) with (2.16) and using (2.15c) we obtain:

d

dt
[K1ϕ − h sinϕ] = 0. (2.17)

Thus equations (2.15a) and (2.15c) reduce to (2.17) which states that the expression in the
square bracket is the first integral of them. This requirement establishes a restriction for
admissible initial conditions. The set of these conditions forms a submanifold of the starting
phase space of the model. Furthermore, the consistency with equation (2.15b) requires that
this expression is to be equal to zero. Therefore, we are to choose those initial conditions so
that such a consistency occurs.
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The above analysis has shown that the only equation describing the dynamics of the
classical continuousXY model in an external time-dependent magnetic field is the elliptic sine–
Gordon equation (2.15b). This equation corresponds formally to that obtained by Mikeska
[1], however, there is an important difference between them: our equation does not contain
the time derivative explicitly and the time dependence ofϕ is governed by the time-dependent
external magnetic field. This is the only way to start the dynamics of the model. One can say
that the dynamics of this model is ‘exotic’ because it depends on time through the ‘external’
functionh(t).

3. The covariant Hamilton–Jacobi equation technique for the elliptic sine–Gordon
equation

It was shown in section 2 that the only equation describing the dynamics of the classical
continuousXY model in a time-dependent magnetic field is the elliptic sine–Gordon equation
(2.15b). This equation did not contain the time derivative, but the time dependence was built
into the magnetic field. This is the characteristic feature of the model defined as a two-
component spin–field with constraint (2.2).

In this section we solve this equation by using the covariant Hamilton–Jacobi equation
technique. This technique reduces the problem of solving the differential equation of the
second order to solving the differential equation of the first order [11, 12].

We rewrite equation (2.15b) in the form:

1ϕ = q(t) sinϕ (3.1)

whereq(t) = h(t)

K
.

This equation can be expressed in the form of the covariant Euler–Lagrange equation:

∂µ

[
∂L

∂(∂µϕ)

]
− ∂L
∂ϕ
= 0 (3.2)

whereL is the Lagrangian density given by

L = 1
2(∂µϕ)(∂

µϕ)− 2q(t) cos2 ϕ

2 . (3.3)

Defining the generalized impulse:

Pµ = ∂L
∂(∂µϕ)

(3.4)

and the Hamiltonian density:

H = Pµ(∂µϕ)− L (3.5)

the equations of motion are the following:

∂µϕ = ∂H
∂Pµ

(3.6a)

∂µP
µ = −∂H

∂ϕ
. (3.6b)

The corresponding covariant Hamilton–Jacobi equation is [11, 12]:

H
(
ϕ,
∂Sµ

∂ϕ
, x

)
+ ∂µS

µ = 0 (3.7)

whereSµ is defined as
∂Sµ

∂ϕ
= Pµ. (3.8)
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In the present case:

H = 1
2P

µPµ + 2q cos2 ϕ

2 (3.9)

and so the covariant Hamilton–Jacobi equation takes the explicit form:
1

2

∂Sµ

∂ϕ

∂Sµ

∂ϕ
+ 2q cos2

ϕ

2
+ ∂µS

µ = 0. (3.10)

Because the Hamiltonian density does not depend onx explicitly, equation (3.10) can therefore
be separated into the form of two independent equations:

1

2

∂Sµ

∂ϕ

∂Sµ

∂ϕ
+ 2q cos2

ϕ

2
= E (3.11a)

∂µS
µ +E = 0 (3.11b)

whereE is the separation constant.
Inserting∂S

µ

∂ϕ
= Pµ = ∂µϕ into (3.11a) one obtains:

1
2(∂

µϕ)(∂µϕ) + 2q cos2 ϕ

2 = E. (3.12)

Let us consider the meaning of the separation constantE. As ϕ(x) is a real function
(∂µϕ)(∂

µϕ) > 0. Therefore, following (3.12) we have:

E − 2q cos2 ϕ

2 > 0 ∀ϕ ∈ [0, 2π ]. (3.13)

In particular, equation (3.13) should be satisfied for the maximal value of cos2 ϕ

2 , thus:

E − 2q > 0. (3.14)

The exact value ofE can be obtained from (3.12) by taking an appropriate boundary condition
for ϕ and its gradient∂µϕ. Moreover, it results from (3.12) that this value depends onq(t).

With the aid of the new variable chosen in the form [13]:

V =
∫ ϕ

ϕ0

dξ√
2E − 4q cos2 ξ

2

(3.15)

whereϕ0 = const, equation (3.12) can be rewritten as

(∂µV )(∂
µV ) = 1 (3.16)

which is the eikonal equation. (Following (3.13)V is a real function.)
The procedure of obtaining solutions of the Hamilton–Jacobi equation (3.12) consists in

computing integral (3.15) and solving the obtained equation with respect toϕ.
Exact solutions of (3.16) obtained in the way of group-theoretic analysis are given in [14].

In a further analysis we take the simplest solution in the form:

V (x) = 1√
d

d∑
i=1

xi (3.17)

whered is the dimension.
The quantityq in (3.15) is a function of time which, in general, may be positive, negative

or equal to zero. Therefore, equation (3.15) can be written as

V =
∫ ϕ

ϕ0

dξ√
2E ± 4|q| cos2 ξ

2

(3.18a)

where the sign ‘+’ is forq < 0 and ‘−’ is for q > 0 and

V = ϕ − ϕ0√
2E

(3.18b)

for q = 0.
Integrals (3.18a) can be transformed into Legendre’s form of the elliptic integral of the

first kind [15]. They are the following (for simplicity we assume thatϕ0 = 0):
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(1) Forq < 0:

V = k√|q|F
(ϕ

2
, k
)

(3.19)

whereF is the Legendre elliptic integral of the first kind andk =
√

2|q|
E+2|q| is the modulus.

(2) Forq > 0:

V = k√|q|
[
K(k)− F

(
π − ϕ

2
, k

)]
(3.20)

wherek =
√

2|q|
E

andK(k) = F(π2 , k) is the complete elliptic integral.

Inverting (3.19) and (3.20) with respect toϕ we obtain solutions given by formulae:

(1)

ϕ = 2am

(√|q|
k
V, k

)
(3.21)

wheream(u, k) is the Jacobian elliptic function called the amplitude ofu;
(2)

ϕ = π + 2am

(√|q|
k
V −K, k

)
. (3.22′)

Following the properties of the functionam(u, k) equation (3.22′) takes the form:

ϕ = 2 arctan

[
k′tn

(√|q|
k
V, k

)]
(3.22)

wherek′ = √1− k2 andtn(u, k) = tan(am(u, k)) [15].
Solutions (3.21) and (3.22) have such a property that in the limit|q| → 0 they tend to

(3.18b) with ϕ0 = 0.
Figures 1(a) and 1(b) present two-dimensional plots of solutions (3.21) and (3.22) in the

planey = 0, respectively. The values of the magnetic field are represented byk = 0.999 999
in both cases.

In the first caseq < 0 (figure 1(a)). For simplicity we assume thatq = 2k2. Therefore
the separation constant isE = 4(1− k2).

The spin phase exhibits a rapid change of values in the centre of the domain and near their
boundaries. Behaviour in the centre has a soliton-like character. In this region the competition
appears between the exchange effect (important in short distances) and interaction with an
external magnetic field. For large distances the influence of the magnetic field has predominant
significance.

The solution forq > 0 (figure 1(b)) in whichE = 4 (forq = 2k2) is a simple modification
of the previous case (which is seen in (3.22′)). It exhibits the ‘boundary effect’, but in the centre
of the domain the spins are parallel.

4. The Bäcklund transformation method for the elliptic sine–Gordon equation

The main qualitative result of section 3 is the following: the solutions of the problem depend
on time through the time-dependent external magnetic field (appearing as a coefficient in the
elliptic sine–Gordon equation). It turned out that the sign of the functionh(t) had an important
significance. Dependent on that sign we had three branches of solutions given by (3.21), (3.18b)
and (3.22). But in the limit|q| → 0 remained the only solution given by (3.18b).
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Figure 1. (a) The phaseϕ(x, y) of theXY spin–field configuration in the time-dependent magnetic
field h < 0 given by formula (3.21) in the planey = 0 for k = 0.999 999,q = 2k2 and
E = 4(1− k2). (b) The phaseϕ(x, y) of theXY spin–field configuration in the time-dependent
magnetic fieldh > 0 given by formula (3.22) in the planey = 0 for k = 0.999 999,q = 2k2 and
E = 4.

In this section we verify the above results on the basis of the Bäcklund transformation
method for the equation in two spatial dimensions.

The main idea of this method is to find such relations between two solutions of the
considered equation given in the form of differential equations so that it is possible to integrate
them in a simpler way. (A precise definition of the Bäcklund transformation is given in [16, 17].)
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In the considered case equation (3.1) has the form:(
∂2

∂x2
+
∂2

∂y2

)
ϕ = q(t) sinϕ (4.1)

which can be written as:

∂z∂z̄ϕ = g(t) sinϕ (4.2)

whereϕ is a real function,z = x + iy, z̄ = x − iy, ∂z = 1
2(

∂
∂x
− i ∂

∂y
), ∂z̄ = 1

2(
∂
∂x

+ i ∂
∂y
),

g(t) = 1
4q(t).

The B̈acklund transformation for equation (4.2) is the following:

∂z91 = ξ1(θ) sin92 (4.3a)

∂z̄92 = ξ2(θ) sin91 (4.3b)

where

91 = 1
2(ϕ1 + βϕ2) (4.4a)

92 = 1
2(ϕ1− βϕ2) (4.4b)

andθ is called the spectral or B̈acklund transformation parameter.
The functionsϕ1 andβϕ2 are two solutions of equation (4.2),β is constant and

ξ1ξ2 = g. (4.5)

Before obtaining solutions of (4.2) let us consider the complex conjugation of functions91

and92. It is easy to see that the following symmetry relations hold (bars denote the complex
conjugation):

9̄1 = 91 9̄2 = 92 (4.6)

whenβ is a real number;

9̄1 = 92 9̄2 = 91 (4.7)

whenβ is a pure imaginary number.
At first let us consider the second case given by (4.7) [18]. Taking the complex conjugation

of both sides of (4.3a) and comparing with (4.3b) we obtain that

ξ2 = ξ̄1. (4.8)

Substituting (4.8) into (4.5) we have

|ξ1|2 = g. (4.9)

Thusξ1 = √geiθ , whereθ is the spectral parameter.
It results from (4.9) that in this case the Bäcklund transformation exists wheng is positive.
In the first case (equation (4.6)) let us assume for simplicity thatβ = 1.
One can rewrite equations (4.3) in the form:

∂z

(ϕ1 + ϕ2

2

)
= ξ1 sin

(
ϕ1− ϕ2

2

)
(4.10a)

∂z̄

(
ϕ1− ϕ2

2

)
= ξ2 sin

(ϕ1 + ϕ2

2

)
. (4.10b)

Becauseϕ2 = 0 is a solution of (4.2) one can thus substitute it into (4.10).
We obtain the following equations forϕ1:

∂z

(ϕ1

2

)
= ξ1 sin

(ϕ1

2

)
(4.11a)

∂z̄

(ϕ1

2

)
= ξ2 sin

(ϕ1

2

)
. (4.11b)
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Taking complex conjugation of (4.11b) and comparing the obtained equation with (4.11a)
we obtain formula (4.8) again. This means that equation (4.2) has real solutions when the
parameterg is positive.

The solution of equations (4.11) has he form:

ϕ1 = 4 arctan{c exp[ξ1(θ)z + ξ̄1(θ)z̄]} (4.12)

or

ϕ1 = 4 arctan{c exp[2
√
g(x cosθ − y sinθ)]} (4.12′)

wherec is a real constant, which is the one-soliton-like solution for great values ofg. (The
method of obtaining multiple-soliton-like solutions is described in [18].)

The above considerations concerned the situation when the sign of the functiong(t) in
equation (4.2) was positive. Moreover, it can be equal to zero or negative.

In the case whereg = 0, equation (4.2) takes the form:

∂z∂z̄ϕ = 0. (4.13)

The general solution of (4.13) in the form of a real function is

ϕ = f (z) + f (z) (4.14)

wheref is an arbitrary function of the argumentz andf̄ is its complex conjugation. In the
case whereg < 0, equation (4.2) can be written as

∂z∂z̄ϕ = −|g| sinϕ. (4.15)

Using the B̈acklund transformation method one can obtain solutions of (4.15) in the form of
complex functions, which here have no physical interpretation. However, the real solution of
equation (4.15) obtained using the property of the trigonometric function sine can be written
in the form

ϕ = π + ϕ1 (4.16)

whereϕ1 is the solution of equation (4.2) withg > 0.
Solution (4.16) can be interpreted in this way so that the change of direction of the magnetic

field gives the spin–field configuration turned byπ .
Let us consider the properties of solutions (4.12) and (4.16) in the case where|g| → 0.

Following (4.9) and (4.8)ξi → 0, i = 1, 2, in that limit. Thus solution (4.12) takes the form:

ϕ1 = 4 arctanc (4.17)

whereas

ϕ = π + 4 arctanc0. (4.18)

In order to obtain consistency of the above solutions we compare (4.18) with (4.17). The
consistency condition is

c0 = c − 1

c + 1
(4.19)

wherec 6= −1.
Solution (4.14), forg = 0, ought to be consistent with (4.17) and (4.18). This consistency

condition readsϕ = 4 arctanc.
Thus the solutions obtained using Bäcklund transformation have similar properties as

those obtained on the basis of the Hamilton–Jacobi equation, but they differ in their functional
forms.

However, it is possible to compare these solutions. In order to do this let us assume that
k = 1 in equation (3.19).
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(a)

(b)

Figure 2. (a) The phaseϕ(x, y) of theXY spin–field configuration in the time-dependent magnetic
field h > 0 given by formula (4.12′) for c = 0.5, θ = 11π

6 , g = 10. (b) Sections of configuration
given in (a) by the planey = 0 for g = 10 (——),g = 0.01 (– – –),g = 0.001 (· · · · · ·).

Following the formula [15]:

F
(ϕ

2
, 1
)
= ln tan

(π + ϕ

4

)
(4.20)

we have

ϕ = 4 arctan

{
exp

[
2
√
|g| (x + y)√

2

]}
− π (4.21)

which corresponds to (4.16).
Figure 2(a) presents a three-dimensional plot of the solution (4.12′). The values of the

parameters are the following:c = 0.5, θ = 11π
6 andg = 10. It exhibits a localization

characteristic of a one-soliton-like solution. The behaviour of this solution in a decreasing
magnetic field is shown in figure 2(b). The plots were made in the planey = 0. The solutions
become increasingly flat when the field decreases and tend to a constant valueϕ = 4 arctanc
when the field disappears. Thus, the soliton decays in the decreasing field. Applying the
increasing magnetic field of opposite direction we can create the soliton (with the phase turned
by π ) again. The results for this case are presented in figures 3(a) and 3(b). The functional
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(a)

(b)

Figure 3. (a) The phaseϕ(x, y) of theXY spin–field configuration in the time-dependent magnetic
fieldh < 0 given by formula (4.16) forc0 = − 1

3 , θ = 11π
6 , g = 10. (b) Sections of configurations

given in (a) by the planey = 0 for g = 10 (——),g = 0.01 (– – –),g = 0.001 (· · · · · ·).

form of the solution is given by formula (4.16). The constant coefficientc0 is given by (4.19)
and is equal to:− 1

3. The parametersθ andg have the same values as in figures 2(a) and 2(b).

5. Conclusions

In this paper we have analysed the properties of the classical continuousXY model in a
time-dependent external magnetic field.

The model was defined as a two-component field onRd with the normalization condition
given by equation (2.2). It appeared that the dynamics of such a defined model had to be
described on the basis of Dirac’s method for constrained systems.

The analyses showed that the only equation describing the evolution of the model was
the elliptic sine–Gordon equation with the time-dependent coefficient (equation (3.1)). This
equation was simultaneously the first integral of equations of motion (2.15a) and (2.15c),
as well as an additional constraint imposed on the starting space defined by normalization
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condition (2.2). This starting space has the structure of the fibre bundle with the total space:
M =⋃x∈Rd (S

1)x , where(S1)x is a circle at pointx ∈ Rd and the base spaceRd , whereas the
resulting space is given by solutions of equation (2.15b). The specific feature of this equation
is the lack of time derivative in it. Thus, the dynamics of the spin–field is governed by the time
dependence of the external magnetic field.

Such a ‘strange’ behaviour of the model results from the fact that normalization condition
(2.2) is not invariant of the Lie algebra defined by (2.4).

Equation (3.1) was solved in two ways:

(i) using the covariant Hamilton–Jacobi equation;
(ii) on the basis of the B̈acklund transformation method.

In the first case we considered the problem in the spaceRd of arbitrary dimensiond, whereas
in the second case we considered the problem in the spaceR2.

The results are qualitatively similar: dependent on the sign of the functionh(t) we have
obtained three branches of solutions: forh(t) < 0,h(t) = 0 andh(t) > 0. When|h| → 0 the
solutions obtained on the basis of both methods transform continuously to a ‘static’ solution
(i.e. forh = 0).

The solutions obtained on the basis of the Hamilton–Jacobi technique have the form of
Jacobian elliptic functions and exhibit a domain structure, whereas the solutions obtained on
the basis of the B̈acklund transformation method have the form of one-soliton-like solutions for
great values ofh(t) and they decay when the field disappears. Moreover, they are the special
case of those obtained on the basis of the Hamilton–Jacobi method. However, the Bäcklund
transformation method provides the possibility of generating multisoliton solutions.

One can show that our approach to the classicalXY model leads to the same structure of
equations of motion as the approaches considered in [2] for the classicalXY model and in [9]
for the classical Heisenberg model with the constraint:Sz − B ≈ 0, whereB is the constant
defined in equation (1.3).

The elliptic sine–Gordon equation has been obtained in this paper as the equation of
motion of the classical continuousXY model in an external magnetic field. The important
feature of this equation is the fact that the coefficient appearing by the sine function on the
right-hand side of it is a function of time and may change the sign, dependent on the direction
of the magnetic field.

The equation withq = const> 0 was investigated by many authors. Generally, this
equation describes static (i.e. time-independent) nonlinear phenomena in two-dimensional
systems of condensed matter physics and field theory [19]. In particular, the elliptic sine–
Gordon equation can be used to describe topological defects in magnetic structures [20–24]
and its solutions may be used in describing the propagation of magnetic flux through a large two-
dimensional Josephson tunnelling junction [18]. The authors used the Bäcklund transformation
method [18, 20], the direct Hirota method [22, 23], the inverse scattering method [24–28] and
the ansatz:ϕ = 4 arctan[X(x)Y (y)] [21].

The results obtained in this paper on the basis of the Bäcklund transformation method (for
q = 1) are analogical to those obtained in [18], however the results presented in [20] (obtained
by the same method) are more general and describe topological defects in incommensurate
magnetic and crystal structures. Similarly, the results obtained by the inverse scattering method
are more general and provide the possibility to describe vortices and vortex dipoles [27, 28].

All these methods were used only in the case whereq > 0, whereas the Hamilton–
Jacobi technique also provides the possibility of solutions forq < 0. Thus the elliptic sine–
Gordon equation with the negative right-hand side needs more detailed investigation using
other methods.
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